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Example Data: Diet and Ovariectomy (Ovx)

● Study Design:

○ Each mouse is an experimental unit
○ Balanced and complete randomized factorial design

○ Treatment: OVX (shamOVX vs. OVX) and Diet (low fat vs. high fat) – 4 groups
■ Combine the levels of the factors into one categorical variable

○ Outcome: mouse weight (continuous variable)

○ Goal: To identify whether there is a group(s) that has a significantly different mean weight.

LowFat LowFat.OVX HighFat HighFat.OVX

N 10 10 10 10
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One-way ANOVA



Where We Stand: to compare continuous data in 
multiple independent groups

5

Two-group
Is data normal?

Mann-Whitney U test
(i.e. Wilcoxon rank-sum test or 
Mann-Whitney-Wilcoxon test)No

Yes
Welch’s t-testEqual

variances?

Student’s t-test

No

Yes

More than 
two groups

Is data normal?

Kruskal-Wallis test
No

Yes
Welch’s ANOVAEqual

variances?

ANOVA

No

Yes

● Assumptions: 
○ Errors should be random 

and independent
○ Normality 
○ Homogeneity of variance

● If assumptions violated, 
○ Transform your data and see 

if they meet assumptions
○ If still violated, try 

non-parametric approach 
(Kruskal-Wallis test)



Fisher’s Solution: ANOVA

● Idea: Instead of doing multiple pairs of comparisons, why don’t we do a single test?
○ This test will tell us whether there is difference in any of the means.
○ We do multiple comparisons between pairs only after we know there is difference in means 

across the groups.

● Hypotheses:
○ H0: All group means are the same. (H0: μ1= μ2 = … = μp)
○ Ha: At least one group mean is different.

● Process:
○ (p>α) fail to reject H0 → all group means are the same → No further investigation

○ (p<α) reject H0 → At least one group mean is different → Post-hoc analysis (i.e., pairwise 
comparison) to identify which group(s) mean(s) are significantly different.
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Step by Step of One-way ANOVA

1. Combine the levels of the factors into one categorical variable (Diet & OVX)

2. Linear regression fitting to check group means

3. One-way ANOVA

4. Post-hoc analysis to assess hypotheses of interest

5. Model assumption assessment

6. Analysis with additional methods to improve the model
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One-way ANOVA: Cell Means Model in R

cellmeans_model <- lm(MouseWt ~ GroupName - 1, data = dat.work)
summary(cellmeans_model)

## Call:
## lm(formula = MouseWt ~ GroupName - 1, data = dat.work)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.220 -1.123 -0.080  1.298  6.310 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## GroupNameLF      21.0800     0.7139   29.53   <2e-16 ***
## GroupNameLF.OVX  24.2200     0.7139   33.93   <2e-16 ***
## GroupNameHF      26.9900     0.7139   37.81   <2e-16 ***
## GroupNameHF.OVX  33.0300     0.7139   46.27   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.257 on 36 degrees of freedom
## Multiple R-squared:  0.9936, Adjusted R-squared:  0.9929 
## F-statistic:  1398 on 4 and 36 DF,  p-value: < 2.2e-16

● In R, 1 means Intercept. 
● Hence, -1 means 

intercept-free model, which is 
“cell means model”.

Each coefficient indicates each 
group mean directly
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One-way ANOVA

anova(cellmeans_model)

## Analysis of Variance Table
##
## Response: MouseWt
##           Df  Sum Sq Mean Sq F value    Pr(>F)
## GroupName  4 28504.2  7126.0  1398.3 < 2.2e-16 ***
## Residuals 36   183.5     5.1
## ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

As p<0.001, we can conclude 
that at leat one group mean is 
different.

Now, we are wondering which 
group mean(s) are different → 
Post-hoc analysis
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library(multcomp)
aov.cellmeans <- aov(MouseWt ~ GroupName -1, data = dat.work)
summary(glht(aov.cellmeans, linfct=mcp(GroupName="Tukey")), test = adjusted("none"))

One-way ANOVA: Post-hoc Analysis

##   Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = MouseWt ~ GroupName - 1, data = dat.work)
##
## Linear Hypotheses:
##                               Estimate Std. Error t value Pr(>|t|)
## HighFat.OVX - HighFat == 0        6.04       1.01   5.983 7.33e-07 ***
## LowFat - HighFat == 0            -5.91       1.01  -5.854 1.09e-06 ***
## LowFat.OVX - HighFat == 0        -2.77       1.01  -2.744  0.00941 **
## LowFat - HighFat.OVX == 0       -11.95       1.01 -11.837 5.73e-14 ***
## LowFat.OVX - HighFat.OVX == 0    -8.81       1.01  -8.726 2.07e-10 ***
## LowFat.OVX - LowFat == 0          3.14       1.01   3.110  0.00365 **
## ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## (Adjusted p values reported -- none method)

Depending on your hypotheses:
● Compare all possible pairs: “Tukey”
● Compare control to each treatment 

group: “Dunnett”
● Or Customize the contrast matrix K
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K <- rbind("OVX effect in LF"     = c(-1, 1, 0, 0),
 "OVX effect in HF"     = c(0, 0, -1, 1),
 "HF effect in shamOVX" = c(-1, 0, 1, 0),
 "HF effect in OVX"     = c(0, -1, 0, 1),
 "OVX effect"           = c(-1, 1, -1, 1),
 "HF effect"            = c(-1, -1, 1, 1),
 "OVX HF Interation"    = c(1, -1, -1, 1))

summary(glht(aov.cellmeans, linfct=mcp(GroupName=K)), test = adjusted(type="none"))

One-way ANOVA: Contrast Matrix

If you are interested in a specific treatment 
effect, we can identify the effect of interest by 
designing and inputting a contrast matrix
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One-way ANOVA: Contrast Matrix (cont’d)

##   Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: User-defined Contrasts
##
## Fit: aov(formula = MouseWt ~ GroupName - 1, data = dat.work)
##
## Linear Hypotheses:
##                           Estimate Std. Error t value Pr(>|t|)
## OVX effect in LF == 0        3.140      1.010   3.110  0.00365 **
## OVX effect in HF == 0        6.040      1.010   5.983 7.33e-07 ***
## HF effect in shamOVX == 0    5.910      1.010   5.854 1.09e-06 ***
## HF effect in OVX == 0        8.810      1.010   8.726 2.07e-10 ***
## OVX effect == 0              9.180      1.428   6.430 1.86e-07 ***
## HF effect == 0              14.720      1.428  10.310 2.73e-12 ***
## OVX HF Interation == 0       2.900      1.428   2.031  0.04967
## ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## (Adjusted p values reported -- none method)
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Significance Level and Multiple Comparisons

● Family-wise error rate (FWER): Probability of having at least one false 
positives (i.e.,Type I error) in multiple comparisons

○ When comparing more than 2 group means, using significance level of α, what is the 
probability of making at least one wrong decisions?

● FWER for different number of comparisons given different significance 
levels:

1 3 6 10 15 21 28 36 45

0.05 0.05 0.14 0.26 0.4 0.54 0.66 0.76 0.84 0.90

0.01 0.01 0.03 0.06 0.1 0.14 0.19 0.25 0.30 0.36
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##   Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = MouseWt ~ GroupName - 1, data = dat.work)
##
## Linear Hypotheses:
##                               Estimate Std. Error t value Pr(>|t|)
## HighFat.OVX - HighFat == 0        6.04       1.01   5.983 7.33e-07 ***
## LowFat - HighFat == 0            -5.91       1.01  -5.854 1.09e-06 ***
## LowFat.OVX - HighFat == 0        -2.77       1.01  -2.744  0.00941 **
## LowFat - HighFat.OVX == 0       -11.95       1.01 -11.837 5.73e-14 ***
## LowFat.OVX - HighFat.OVX == 0    -8.81       1.01  -8.726 2.07e-10 ***
## LowFat.OVX - LowFat == 0          3.14       1.01   3.110  0.00365 **
## ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## (Adjusted p values reported -- none method)

library(multcomp)
aov.cellmeans <- aov(MouseWt ~ GroupName -1, data = dat.work)
summary(glht(aov.cellmeans, linfct=mcp(GroupName="Tukey")), test = adjusted("none"))

One-way ANOVA: Post-hoc Analysis

In case you need p-value adjustment due to 
the multiple comparison, here we can select 
p-value adjustment method. For more, check 
out ?multcomp::adjusted in R.
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boxplot(MouseWt ~ GroupName, data = dat.work,
   xlab = "Group", ylab = "Mouse Weight",
   main = "Average Mouse Weight by Diet and OVX")

One-way ANOVA: Boxplot
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qqnorm(rstudent(cellmeans_model))
qqline(rstudent(cellmeans_model))

Model Diagnostics - Normality & Equal Variances

plot(1:nrow(dat.work), rstudent(cellmeans_model), pch=3,
xlab="Index", ylab="Studentized Residual")
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Two-way ANOVA



Two-way ANOVA: Basic Idea

● Idea: An extension of one-way ANOVA to the two factor setting

● Process:
○ Partition the total variation into 3-4 parts

■ Variation due to treatment factor1 (Diet)
■ Variation due to treatment factor2 (OVX)
■ Variation due to interaction between factor1 and factor2 (Diet and OVX) - optional
■ Variation due to random error

○ Compare each of the first three parts with the fourth part

● Two-way ANOVA does NOT have strong rationale with FWER control. 
○ Allows control for FWER for each factor separately.
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Step by step of two-way ANOVA

1. Linear regression fitting to check group means

2. Two-way ANOVA for assessing main effects and interaction effects (optional)

3. Post-hoc analysis to assess hypotheses of interest

4. Model assumption assessment

5. Analysis with additional methods to improve the model
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Call:
lm(formula = MouseWt ~ Diet * OVX, data = dat.work)

Residuals:
   Min     1Q Median     3Q    Max 
-5.220 -1.123 -0.080  1.298  6.310 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)         21.0800     0.7139  29.529  < 2e-16 ***
DietHighFat          5.9100     1.0096   5.854 1.09e-06 ***
OVXOVX               3.1400     1.0096   3.110  0.00365 ** 
DietHighFat:OVXOVX   2.9000     1.4277   2.031  0.04967 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.257 on 36 degrees of freedom
Multiple R-squared:  0.8083, Adjusted R-squared:  0.7923 
F-statistic: 50.59 on 3 and 36 DF,  p-value: 5.42e-13

Two-way ANOVA: effects model in R

effects_model <- lm(MouseWt ~ Diet * OVX, data = dat.work)
summary(effects_model)

In effects model, 
● the intercept indicates the 

reference group’s mean. 
● Here, LowFat and shamOVX 

group.
● Other coefficients show the 

mean difference between each 
of other groups and LowFat 
and shamOVX group.

This time, intercept was included, 
which is “effects model.”
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## Analysis of Variance Table
##
## Response: MouseWt
##           Df Sum Sq Mean Sq  F value    Pr(>F)
## Diet       1 541.70  541.70 106.2948 2.731e-12 ***
## OVX        1 210.68  210.68  41.3411 1.859e-07 ***
## Diet:OVX   1  21.02   21.02   4.1256   0.04967 *
## Residuals 36 183.46    5.10
## ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Two-way ANOVA

anova(effects_model)

● Interaction term is significant
● Conclusion: there is a 

significant association 
between Diet and Ovx.
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Two-way ANOVA: Contrast Matrix

K2 <- rbind("LF.OVX - LF"               = c(0,0,1,0),
            "HF.OVX - HF"               = c(0,0,1,1),
            "HF - LF"                   = c(0,1,0,0),
            "HF.OVX - LF.OVX"           = c(0,1,0,1),
            "LF.OVX + HF.OVX - LF - HF" = c(0,0,2,1),
            "HF + HF.OVX - LF - LF.OVX" = c(0,2,0,1), 
            "HF.OVX - HF - LF.OVX + LF" = c(0, 0, 0, 1))

summary(glht(effects_model, linfct=K2), test=adjusted(type="none"))

Likewise, we can input a contrast matrix depending on your 
hypotheses. 

However, this time the contrast matrix is different as we used 
effects model instead of cell means model. 
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Two-way ANOVA: Contrast Matrix

##
##   Simultaneous Tests for General Linear Hypotheses
##
## Fit: lm(formula = MouseWt ~ Diet * OVX, data = dat.work)
##
## Linear Hypotheses:
##                                Estimate Std. Error t value Pr(>|t|)
## LF.OVX - LF == 0                  3.140      1.010   3.110  0.00365 **
## HF.OVX - HF == 0                  6.040      1.010   5.983 7.33e-07 ***
## HF - LF == 0                      5.910      1.010   5.854 1.09e-06 ***
## HF.OVX - LF.OVX == 0              8.810      1.010   8.726 2.07e-10 ***
## LF.OVX + HF.OVX - LF - HF == 0    9.180      1.428   6.430 1.86e-07 ***
## HF + HF.OVX - LF - LF.OVX == 0   14.720      1.428  10.310 2.73e-12 ***
## HF.OVX - HF - LF.OVX + LF == 0    2.900      1.428   2.031  0.04967 *
## ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## (Adjusted p values reported -- none method)
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Two-way ANOVA: Interaction Plot

interaction.plot(dat.work$Diet, dat.work$OVX, dat.work$MouseWt, 
            xlab="Diet Type", ylab="Average Mouse Weight",
            legend=F, lty=2:1)

legend("topleft", legend=levels(dat.work$OVX), lty=2:1, bty="n")
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Interaction Term Analysis Process

Run the model and examine the 
importance of interaction term

● Test hypotheses of interest
● Assess model assumptions

Q. Interaction term p<0.25? 

● Remove the interaction term
● Refit the model

Yes No

(general rule used by some statisticians)

Report results ● Transform the data → rerun the model
● Sensitivity analysis with other modeling strategies
● Report the results based on all the analysis performed

Q. Model ssumptions are met?

Yes No

● Keeping interaction term when there is no interaction → reduced efficiency in estimation
● Dropping interaction term when there is interaction → biased main treatment effect estimation
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Partial F-test



Partial F-test: Basic Idea

● When to Use: To compare model fitting performances between a complex model 
and a simpler subset model.

○ e.g. Y ~ b0 + b1X1 + b2X2 + b3X3 vs. Y ~ b0 + b1X1+b2X2

○ Nested models: A complex model should include all predictors that a simpler model has.

○ Cannot use to compare non-nested models → Use AIC, BIC, or Vuong’s test instead.

● Hypotheses:
○ H0: Simpler (subset) model with predictors psimple is better.
○ Ha: Complex model with predictors pcomplex is better.

● Process:
○ (p>α) fail to reject H0 → Simpler (i.e., subset or reduced) model is better.
○ (p<α) reject H0 → Complex (i.e., full) model is better
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## Analysis of Variance Table
##
## Model 1: MouseWt ~ Diet
## Model 2: MouseWt ~ Diet + OVX + Diet * OVX
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)
## 1     38 415.17
## 2     36 183.46  2    231.71 22.733 4.129e-07 ***
## ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Partial F-test in R

reduced_model <- lm(MouseWt ~ Diet, data = dat.work)
full_model <- lm(MouseWt ~ Diet + OVX + Diet * OVX, data = dat.work)
anova(reduced_model,full_model)

As p<0.05, there is enough 
evidence that either OVX or Diet * 
OVX interaction term are 
statistically significant.

In other words, complex (full) 
model is better than the simpler 
(reduced) model.
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Repeated Measures and Mixed Effects Model



Repeated Measures ANOVA and Mixed-Effects Model

● Idea: to compare means across one or more variables that are based on repeated 
observations.

● Common issues:
○ NA values: If there is a missing value, you'd need to ignore all data for that sample → 

Solution: Imputation
○ What if we cannot do imputation? Any alternative approach?

● Alternative: Mixed Effects Model
○ Mixed effects model consists of two parts:

■ Fixed effect: when you test for variation among the means of the particular groups 
■ Random effect: individual sample effects (animals, participants, rounds …) are 

considered random
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Example Data: Blood Pressure

● Study Design:

○ Total 66 patients blood pressure 
measured over time

○ Factors: Drug (control vs. treatment) 
and Time (Day4 vs. Day8)

○ Outcome: blood pressure (continuous)

○ Issue: Patients’ bp change over time 
differs from sample to sample

○ Solution: Treat drug and time effects 
fixed and randomize sample effects
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Mixed Effects Model in R

blood_fit <- lmer(d ~ trt + time + trt * time + (1|id), data = blood_data)
summary(blood_fit)

Green: fixed effects (treatment and time effect and 
the interaction of between treatment and time)

Yellow: random effects (individaul sample effect 
randomized)
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Mixed Effects Model in R (cont’d)

● BP treatment effect was 
significant (P=0.049)

● Time effect was not 
significant (P=0.303)

● Interaction between 
treatment and time was not 
significant (P=0.459), 
thereby no significant effect 
of a new drug over time.

Between sample variation is 
much bigger than within sample 
variation (almot 4 times)

## Linear mixed model fit by REML. t-tests use Satterthwaite’s method [lmerModLmerTest]
## Formula: d ~ trt + time + trt * time + (1 | id)
##    Data: blood_data
## REML criterion at convergence: 862
## Scaled residuals:
##      Min       1Q   Median       3Q      Max
## -1.92294 -0.44315  0.05264  0.36653  2.14310
##
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 58.00    7.616
##  Residual             14.87    3.857
## Number of obs: 132, groups:  id, 66
##
## Fixed effects:
##               Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)   -14.4375     1.5091  78.3627  -9.567 8.24e-15 ***
## trtTrmt         4.2022     2.1026  78.3627   1.999   0.0491 *
## time8           1.0000     0.9642  64.0000   1.037   0.3036
## trtTrmt:time8   1.0000     1.3434  64.0000   0.744   0.4594
## ---
## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
##             (Intr) trtTrm time8
## trtTrmt     -0.718
## time8       -0.319  0.229
## trtTrmt:tm8  0.229 -0.319 -0.718
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Biostatistics Support



Biostatistics Services Provided

1. Office Hours: Thursday 2-4pm - calendly.com/cshlbiostat

2. Research Collaborations - Model Development

3. Research Data Analysis

4. Biostatistical Support Letters

5. Study Design and Power Calculations

6. Review/Writing of Methods Sections
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Questions?


