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Example Data: Diet and Ovariectomy (Ovx)

e Study Design:

Each mouse is an experimental unit
o Balanced and complete randomized factorial design

o Treatment: OVX (shamOVX vs. OVX) and Diet (low fat vs. high fat) — 4 groups
m  Combine the levels of the factors into one categorical variable

o Outcome: mouse weight (continuous variable)

LowFat LowFat.OVX HighFat HighFat.OVX

N 10 10 10 10

o @Goal: To identify whether there is a group(s) that has a significantly different mean weight.
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Where We Stand: to compare continuous data in

multiple independent groups

Mann-Whitney U test

(i.e. Wilcoxon rank-sum test or
No Mann-Whitney-Wilcoxon test)

J

W Is data normal?
J Welch'’s t-test

[ Two-group

Equal
Yes q No

variances?

[ Student’s t-test

Kruskal-Wallis test
No

Welch’s ANOVA

More than W Is data normal?
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e Assumptions:

@)

@)

(@)

Errors should be random
and independent
Normality

Homogeneity of variance

® [f assumptions violated,

@)

Transform your data and see
if they meet assumptions

If still violated, try
non-parametric approach
(Kruskal-Wallis test)



Fisher’s Solution: ANOVA

e Idea: Instead of doing multiple pairs of comparisons, why don’t we do a single test?
o This test will tell us whether there is difference in any of the means.
o  We do multiple comparisons between pairs only after we know there is difference in means
across the groups.

e Hypotheses:
o H,: All group means are the same. (H,: p,=y,= ... = pp)
o H_: At least one group mean is different.

e Process:
o (p>q) fail to reject H, — all group means are the same — No further investigation

o (p<a) reject H, — At least one group mean is different — Post-hoc analysis (i.e., pairwise
comparison) to identify which group(s) mean(s) are significantly different.



Step by Step of One-way ANOVA

Combine the levels of the factors into one categorical variable (Diet & OVX)
Linear regression fitting to check group means

One-way ANOVA

Post-hoc analysis to assess hypotheses of interest

Model assumption assessment

Analysis with additional methods to improve the model



One-way ANOVA: Cell Means Model in R

cellmeans model <- 1lm(MouseWt ~ GroupName 1, data = dat.work)
summary (cellmeans model)

ik
#H
ik
#H
ik
#H
ik
#H
ik
#H
ik
#H
ik
#H
ik
##
ik
##
ik

Call:
Im(formula = MouseWt ~ GroupName - 1, data = dat.woxk) ¢ Inf?’1rnean5|r“ercept
e Hence, -1 means
Residuals: intercept-free model, which is
Min 10 Median 30 Max “cell means model”.
-5.220 -1.123 -0.080 1.298 6.310
Coefficients:
Estimate Std. value Pr(>|t])
GroupNameLF 21.0800 0.7139  29.53 Each coefficient indicates each
GroupNameLF.OVX 24.2200 0.7139  33.93  <2e-16 *** group mean directly
GroupNameHF 26.9900 0.7139  37.81 <2e-16 ***
GroupNameHF.OVX 33.0300 0.7139 46.27 <2e-16 ***
Signif. codes: 0 '"***' .00l '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.257 on 36 degrees of freedom
Multiple R-squared: 0.9936, Adjusted R-sguared: 0.9929
F-statistic: 1398 on 4 and 36 DF, p-value: < 2.2e-16



One-way ANOVA

anova (cellmeans model)

## Analysis of Variance Table

##

## Response: MouseWt

## Df Sum Sq Mean Sg F value Pr (>F)

## GroupName 4 28504.2 7126.0 1398.3 < 2.2e-16 ***
## Residuals 36 183.5 5.1

## —-—-

## Signif. codes: 0 ’***’ (0.001 ’'**’ 0.01 "*’ 0.05 '.

4

~

As p<0.001, we can conclude
that at leat one group mean is
different.

o.1 7 "1

Now, we are wondering which
group mean(s) are different —

Post-hoc analysis
\ /




library (multcomp)

One-way ANOVA: Post-hoc Analysis

aov.cellmeans <- aov (MouseWt ~ GroupName -1, data
summary (glht (aov.cellmeans, linfct=mcp (GroupName=

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means:

Fit: aov(formula

= MouseWt ~ GroupName - 1,

Linear Hypotheses:

Tukey Contrasts

data

= dat.y

dat.work)
)), test = adjusted("none"))

“\\\\\\\\\\\\\\“-§

Depending on your hypotheses:
e Compare all possible pairs: “Tukey”
e Compare control to each treatment
group: “Dunnett”
_ e Or Customize the contrast matrix K

~

/

Estimate Std. Error t wvalue Pr(>|t])

HighFat.OVX - HighFat == 6.04
LowFat - HighFat == 0 -5.91
LowFat.OVX - HighFat == -2.77
LowFat - HighFat.OVX == -11.95
LowFat.OVX - HighFat.OVX == -8.81
LowFat.OVX - LowFat == 3.14
Signif. codes: 0 7***’ (0.001 "**" 0.01 ’"*’/
(Adjusted p values reported -- none method)

1.01
1,01 =5.
1,01 =2.
1.01 -11.
1,01 =8-.
1.01

0.05 7./

5.

3.

983 7.33e-07 ***
854 1.09e-06 ***
744 0.00941 *x*
837 5.73e-14 **x*
726 2.07e-10 ***
110 0.00365 **

0.1 7 "1
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One-way ANOVA: Contrast Matrix

K <- rbind("OVX effect in LF" =c(-1, 1, 0, 0),
"OVX effect in HF" =c¢c(0, 0, -1, 1),
"HF effect in shamOVX" = c¢(-1, 0, 1, 0),
"HF effect in OVX" = c¢(0, -1, 0, 1),
"OVX effect" =c(-1, 1, -1, 1),
"HF effect" =c(-1, -1, 1, 1),
"OVX HF Interation" =c(1, -1, -1, 1))

summary (glht (aov.cellmeans, linfct=mcp (GroupName=K)), test = adjusted(type="none"))

T~

If you are interested in a specific treatment
effect, we can identify the effect of interest by
designing and inputting a contrast matrix
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One-way ANOVA: Contrast Matrix (cont’d)

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: User-defined Contrasts

##

## Fit: aov(formula = MouseWt ~ GroupName - 1, data = dat.work)

##

## Linear Hypotheses:

#4 Estimate Std. Error t value Pr(>|t])

## OVX effect in LF == 3.140 1.010 3.110 0.00365 **
## OVX effect in HF == 6.040 1.010 5.983 7.33e-07 ***
## HF effect in shamOVX == 5.910 1.010 5.854 1.09e-06 ***
## HF effect in OVX == 8.810 1.010 8.726 2.07e-10 ***
## OVX effect == 9.180 1.428 6.430 1.86e-07 **xx*
## HF effect == 14.720 1.428 10.310 2.73e-12 ***
## OVX HF Interation == 2.900 1.428 2.031 0.04967

#H -—-

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 "*’ 0.05 ".” 0.1 " " 1
## (Adjusted p values reported -- none method)



Significance Level and Multiple Comparisons

Family-wise error rate (FWER): Probability of having at least one false

positives (i.e.,Type | error) in multiple comparisons

o  When comparing more than 2 group means, using significance level of a, what is the
probability of making at least one wrong decisions?

FWER for different number of comparisons given different significance
levels:

0.05 0.05 0.14 0.26 0.4 0.54 0.66 0.76 0.84 0.90

0.01 0.01 0.03 0.06 0.1 0.14 0.19 0.25 0.30 0.36
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One-way ANOVA: Post-hoc Analysis

library (multcomp)

aov.cellmeans <- aov(MouseWt ~ GroupName -1, data = dat.work)

summary (glht (aov.cellmeans, linfct=mcp (GroupName="Tukey")), test = adjusted( )

## Simultaneous Tests for General Linear Hypotheses In case YOU need p-_Value adJUStment due to
#4 the multiple comparison, here we can select
ii Multiple Comparisons of Means: Tukey Contrasts p-value adjustment method. For more, check
by out ?multcomp: :adjustedin R.

## Fit: aov(formula = MouseWt ~ GroupName - 1, data = dat.work)

##

## Linear Hypotheses:

#4# Estimate Std. Error t value Pr(>|t])

## HighFat.OVX - HighFat == 0 6.04 1.01 5.983 7.33e-07 ***

## LowFat - HighFat == -5.91 1.01 -5.854 1.09e-06 **~*

## LowFat.OVX - HighFat == 0 -2.77 1.01 -2.744 0.00941 *~*

## LowFat - HighFat.OQVX == -11.95 1.01 -11.837 5.73e-14 **~*

## LowFat.OVX - HighFat.OVX == -8.81 1.01 -8.726 2.07e-10 ***

## LowFat.OVX - LowFat == 0 3.14 1.01 3.110 0.00365 **

#H# -——-

## Signif. codes: 0O 7***/ (0,001 '**’ (0.01 '*’ 0.05 ".” 0.1 " " 1

## (Adjusted p values reported -- none method)

14



One-way ANOVA: Boxplot

boxplot (MouseWt ~ GroupName, data = dat.work,
xlab = "Group", ylab = "Mouse Weight",
main = "Average Mouse Weight by Diet and OVX")

Average Mouse Weight by Diet and OVX
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Model Diagnostics - Normality & Equal Variances

qgnorm (rstudent (cellmeans model)) plot(l:nrow(dat.work), rstudent(cellmeans model), pch=3,
qqline (rstudent (cellmeans model)) xlab="Index", ylab="Studentized Residual")

Normal Q-Q Plot
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Two-way ANOVA: Basic Idea

e Idea: An extension of one-way ANOVA to the two factor setting

e Process:

(@)

O

Partition the total variation into 3-4 parts
m Variation due to treatment factor1 (Diet)
m Variation due to treatment factor2 (OVX)
m Variation due to interaction between factor1 and factor2 (Diet and OVX) - optional
m Variation due to random error

Compare each of the first three parts with the fourth part

e Two-way ANOVA does NOT have strong rationale with FWER control.

O

Allows control for FWER for each factor separately.

18



Step by step of two-way ANOVA

Linear regression fitting to check group means

2. Two-way ANOVA for assessing main effects and interaction effects (optional)
3. Post-hoc analysis to assess hypotheses of interest

4. Model assumption assessment

5. Analysis with additional methods to improve the model

19



Two-way ANOVA: effects model in R

effects model <- 1lm(MouseWt ~ Diet * OVX, data =
summary (effects_model)

Call:
Im(formula = MouseWt ~ Diet * OVX, data = dat.work)
Residuals:

Min 10 Median 30 Max
-5.220 -1.123 -0.080 1.298 6.310
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 21.0800 0.7139 29.529 < 2e-16 ***
DietHighFat 5.9100 1.0096 5.854 1.09%9e-06 ***
OVXOVX 3.1400 1.0096 3.110 0.00365 *=*

DietHighFat :0VXOVX

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 *’ 0.05 '." 0.1

Residual standard error: 2.257 on 36 degrees of freedom
Multiple R-squared: 0.8083, Adjusted R-squared: 0.7923
F-statistic: 50.59 on 3 and 36 DF, p-value: 5.42e-13

\

14

2.9000 : .04967 *

1

dat.work)

This time, intercept was included,
which is “effects model.”

6\ effects model,

e the intercept indicates the
reference group’s mean.

e Here, LowFat and shamOVX
group.

e Other coefficients show the
mean difference between each

~

of other groups and LowFat
and shamOVX group. /
20




Two-way ANOVA

anova (effects model)

##
##
##
##
##
##
##
##
##
##

Analysis of Variance Table

Response: MouseWt

Df Sum
Diet 1 541.
OVX 1 210.
Diet:0VX 1 21.

Residuals 36 183.

Signif. codes:

Sgq Mean
70 541.
68 210.
02 21.
46 5.

O I x k%7t

Sqg F wvalue
70 106.2948
68 41.3411
02 4.1256
10
0.001 7 **r

0.

Pr (>F)
2.731e-12 ***
1.859e-07 *x*x*

0.04967 *

01 "*" 0.05 ’.

4

0.1 "7

4

1

Interaction term is significant
Conclusion: there is a
significant association
between Diet and Ovx.

~

/
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Two-way ANOVA: Contrast Matrix

K2 <- rbind("LF
"HF
"HF
"HF
"LF
"HF
"HF

.OVX - LF"
.OVX - HF"
- LE"

.OVX - LF.OVX"

.OVX + HF.OVX - LF - HF"
+ HF.OVX - LF - LF.OVX"
.OVX - HF - LF.OVX + LF"

summary (glht (effects_model, linfct=K2),

= ¢(0,0,1,0),
c(0,0,1,1),
c(0,1,0,0),
c(0,1,0,1),
c(0,0,2,1),
c(0,2,0,1),
= ¢c(0, 0, 0, 1))

test=adjusted (type="none"))

-

Likewise, we can input a contrast matrix depending on your
hypotheses.

However, this time the contrast matrix is different as we used
effects model instead of cell means model.

/
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Two-way ANOVA: Contrast Matrix

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

t value

3.
.983

110

.854
726
.430
.310

Simultaneous Tests for General Linear Hypotheses
Fit: Im(formula = MouseWt ~ Diet * 0OVX, data = dat.work)
Linear Hypotheses:

Estimate Std. Error
LF.OVX - LF == 0 3.140 1.010
HF.OVX - HF == 0 6.040 1.010
HF - LF == 0 5.910 1.010
HEF.OVX - LF.OVX == 8.810 1.010
LF.OVX + HF.OVX - LF - HF == 9.180 1.428
HF + HF.OVX - LF - LF.OVX == 14.720 1.428
HF.OVX - HF - LF.OVX + LF == 2.900 1.428

Signif. codes: 0 7***’ (0,001 "**" 0.01 "*’ 0.05 '
(Adjusted p values reported -- none method)

N O oy 0 U1 O

.7 0.

.031

Pr(>[t])

N PN P

0.00365
.33e-07
.09e-06
.07e-10
.86e-07
.73e-12
0.04967

* %

* Kk x

* k%

* Kk x

* k%

* Kk x

*
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Two-way ANOVA: Interaction Plot

interaction.plot(dat.work$Diet, dat.work$OVX, dat.work$MouseWt,
xlab="Diet Type'", ylab="Average Mouse Weight",
legend=F, 1lty=2:1)

legend ("topleft", legend=levels(dat.work$OVX), lty=2:1, bty="n")

Average Mouse Weight

26 28 30 32

24

--- shamOVX
— 0OVX

LowFat HighFat

Diet Type
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Interaction Term Analysis Process

Run the model and examine the
importance of interaction term

(general rule used by some statisticians) Q. Interaction term p<0.25?

Yes No
e Test hypotheses of interest W ( e Remove the interaction term
e Assess model assumptions J L e Refit the model
Q. Model ssumptions are met?
Yes No
[ Report results J e Transform the data — rerun the model
e Sensitivity analysis with other modeling strategies

e Report the results based on all the analysis performed

e Keeping interaction term when there is no interaction — reduced efficiency in estimation

e Dropping interaction term when there is interaction — biased main treatment effect estimation
25
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Partial F-test: Basic Idea

When to Use: To compare model fitting performances between a complex model
and a simpler subset model.
o eg.Y~Db,+bX +bX,+bX,vs. Y ~Db,+bX+bX,
o Nested models: A complex model should include all predictors that a simpler model has.
o  Cannot use to compare non-nested models — Use AIC, BIC, or Vuong’s test instead.

Hypotheses:
o H,: Simpler (subset) model with predictors Pimple is better.
o H_: Complex model with predictors Peomplex is better.
Process:

o (p>a) fail to reject H, — Simpler (i.e., subset or reduced) model is better.
o (p<a) reject H, — Complex (i.e., full) model is better

27



Partial F-testin R

reduced model <- lm(MouseWt ~ Diet, data = dat.work)
full model <- 1lm(MouseWt ~ Diet + OVX + Diet * OVX, data = dat.work)
anova (reduced model, full model)

## Analysis of Variance Table

‘e / | \
## Model 1: MouseWt ~ Diet As p<005, there is enough
## Model 2: MouseWt ~ Diet + OVX + Diet * OVX evidence that either OVX or Diet *
## Res.Df  RSS Df Sum of Sq F Pr(>F) / OVX interaction term are
LA 38 415.17 statistically significant.
## 2 36 183.46 2 231.71 22.733 4.129e-07 ***
e In other words, complex (full)
## Signif. codes: 0 ’***’ (0.001 ’'**’ 0.01 '*’ 0.05'".” 0.1 " ' . .
model is better than the simpler

Qeduced) model. /




Repeated Measures and Mixed Effects Model
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Repeated Measures ANOVA and Mixed-Effects Model

e Idea: to compare means across one or more variables that are based on repeated
observations.

e Common issues:
o NA values: If there is a missing value, you'd need to ignore all data for that sample —
Solution: Imputation
o What if we cannot do imputation? Any alternative approach?

e Alternative: Mixed Effects Model
o Mixed effects model consists of two parts:
m Fixed effect: when you test for variation among the means of the particular groups
m Random effect: individual sample effects (animals, participants, rounds ...) are
considered random

30



Example Data: Blood Pressure

e Study Design:

o Total 66 patients blood pressure
measured over time

o Factors: Drug (control vs. treatment)
and Time (Day4 vs. Day8)

o Outcome: blood pressure (continuous)

o Issue: Patients’ bp change over time
differs from sample to sample

o Solution: Treat drug and time effects
fixed and randomize sample effects

a 90
Qo

First 12 Patients' BP

id: 2

id: 3

id: 4

95
90
85
80

\

N S [ S s e e 3

id: 6

id: 8

95

85
80

id: 10

id: 12

95
90
85
80

e

e

Difference of BP

4 5 6 7 84 5 6 7 84 5 6 T 84 5 6 7 8
time

Interaction plot

14 -13 -12 -11 -10 -9 8
1

trt
I — Trmt
i --- Ctrl

Day
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Mixed Effects Model in R

blood fit <- lmer(
summary (blood fit)

+ , data = blood data)

Green: fixed effects (treatment and time effect and
the interaction of between treatment and time)

Yellow: random effects (individaul sample effect

randomized)

\

)
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Mixed Effects Model in R (cont’d)

Linear mixed model fit by REML. t-tests use Satterthwaite’s method [lmerModLmerTest]
Formula: d ~ trt + time + trt * time + (1 | id)
Data: blood data
REML criterion at convergence: 862
Scaled residuals:
Min 10 Median 30 Max
-1.92294 -0.44315 0.05264 0.36653 2.14310

Between sample variation is
much bigger than within sample
variation (almot 4 times)

Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 58.00 7
Residual 14.87 3.857
Number of obs: 132, groups: id, 66
/ e BP treatment effect was \

Fixed effects: significant (P=0.049)

Estimate Std. Error df t value Pr(>|t])
(Intercept) -14.4375 1.5091 78.3627 -9.567 8.24e-15 ***
trtTrmt 4.2022 2.1026 78.3627 1.999  0.0491 * e Time effect was not
time8 1.0000 0.9642 64.0000 1.037 0.3036 : e —
trtTrmt:time8 1.0000 1.3434 64.0000 0.744 0.4594 \ Slgmflcant (P_0303)

Signif. codes: 0 ’***’ 0.001 ’"**’ 0.01 "*" 0.05".” 0.1 7 " 1 ° Interaction between

Correlation of Fixed Effects: treatment and time was not
(Intr) Lrtlzm times significant (P=0.459),

trtTrmt -0.718 . e

time8 ~0.319  0.229 thereby no significant effect

trtTrmt:tm8 0.229 -0.319 -0.718 K ofa neW drug over time. /
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Biostatistics Services Provided

1. Office Hours: Thursday 2-4pm - calendly.com/cshlbiostat

2. Research Collaborations - Model Development
3. Research Data Analysis

4. Biostatistical Support Letters

5. Study Design and Power Calculations

6. Review/Writing of Methods Sections
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https://calendly.com/cshlbiostat

Questions?

Cold Spring Harbor Laboratory




